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Abstract

We present a new hierarchical routing algorithm
that combines the loop-free path-finding algorithm
(LPA) with the area-based hierarchical routing scheme
first proposed by McQuillan for distance-vector algo-
rithms. The new algorithm, which we call the Hierar-
chical Information Path-based Routing (HIPR) algo-
rithm, accommodates an arbitrary number of aggrega-
tion levels and can be viewed as a distributed version of
Dijkstra’s algorithm running over a hierarchical graph.
HIPR s verified to be loop-free and correct. Simula-
tions are used to show that HIPR is much more ef-
ficient than OSPF in terms of speed, communication
and processing overhead required to converge to correct
routing tables. HIPR constitutes the basis for future
Internet routing protocols that are as simple as RIPv2,
but with no looping and better performance than pro-
tocols based on link-states.

1. Introduction

Routing information maintained at each router has
to be updated frequently to adapt to network dynam-
ics. In a flat routing architecture, the size of the rout-
ing tables grows linearly with the number of desti-
nations in the network. Accordingly, aggregation of
routing information becomes a necessity in any type
of routing protocol. Hierarchical routing for data-
gram computer networks was first proposed by Mc-
Quillan [10]. According to this scheme (analyzed by
Kamoun and Kleinrock [7]), the nodes in the network
are organized into clusters or areas by grouping (clus-
tering) together the nodes which are close by. Each
of these areas are single addressable entities from the
point of view of higher level areas. The topology
within the area is transparent to the nodes outside
the area. The distance from a source node to an area
represents the actual distance in physical hops (num-
ber of nodes traversed) from the source node to the
destination remote area.

There have been several subsequent proposals for
hierarchical routing, which vary in the way in which
the nodes are organized (addressing scheme) and the
routing algorithms used [1], [15], [4], [8], [16]. With
very few exceptions [5], prior proposals for hierarchi-
cal routing have assumed variants of the Distributed
Bellman-Ford (DBF) algorithm or topology-broadcast
algorithms. In the backbone scheme for hierarchical
routing used in OSPF [11], a network is divided into
areas connected by a backbone.
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A number of algorithms have been proposed [2],
[6], [13], [14] that eliminate the counting-to-infinity
problem of DBF and eliminate loops altogether [3].
These algorithms are based on the maintenance and
incremental exchange of shortest-path routing trees.
These can be viewed as distributed implementation
of Dijkstra’s shortest path algorithm, where as link-
state algorithms require a router to have a topology
map over which it runs Dijkstra’s algorithm. A few of
these shortest-path-tree-based algorithms have been
shown to outperform link-state algorithms [3], [13].
However, because they rely on each router knowing
the shortest path tree to every destination, they force
a router to know more “host routes” (corresponding
to individual routers) than would be necessary if DBF
were used. Furthermore, in the Internet, routing in-
formation for individual remote routers may not be
available because of subnetting and masking.

This paper presents, verifies, and analyzes the per-
formance of the first hierarchical routing algorithm
based on the maintenance and exchange of hierarchi-
cal routing trees. We call this algorithm the Hierar-
chical Information Path-based Routing (HIPR) algo-
rithm. The main idea of HIPR is to provide a dis-
tributed implementation of Dijkstra’s shortest path
algorithm running over a hierarchical graph organized
in areas according to McQuillan’s scheme for hierar-
chical routing. The loop-free path-finding algorithm
(LPA) [3] is extended for this purpose.

HIPR, which implements a distributed version of
Dijkstra’s algorithm, is compared with OSPF, which is
based on replicated implementation of Dijkstra’s algo-
rithm. The simulation results clearly show that HIPR,
is far superior to OSPF in terms of number of steps,
overhead traffic, and processing load required to up-
date routing tables. HIPR constitutes the basis for
new internet routing protocols that are as simple as
RIPv2 [9] and is much more efficient than OSPF or
any other routing protocol based on topology broad-
cast.

2. Internetwork Model

An internetwork is modeled as an undirected con-
nected graph in which the routing nodes are the nodes
of the graph and direct links between the routers are
the edges of the graph. Each node represents a router
and is a computing unit involving a processor, local
memory and input and output queues. Each link in
such a graph has two costs, one in each direction, asso-
ciated with it. A link exists in both directions at any
one time. The lower-level protocol ensures reliable de-
livery of packets. All messages are processed one at
a time in the order in which there are received. Link
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Fig. 1. Example of the Hierarchical Network Topology

costs vary in time but are always positive. The cost
of the failed link is marked as infinity. A node failure
is modeled as all links incident on that node failing at
the same time.

Following the McQuillan’s approach to area-based
routing, hosts and networks can be organized into L
levels of areas. An area at level k is called a k-area;
routers form O-area. A group of nodes forms a 1-area
and a group of k-areas form a k + l-area. Each router
can belong to only one area at each level in the hi-
erarchy. A boundary node or a border node is defined
as a router with direct connectivity with the bound-
ary nodes in other areas. The distance from a source
router to a remote k area represents the length of the
true shortest-path from a node to the remote area.
Clearly, the distance from a router to another router
in the same 1-area is the true shortest path distance.
Similarly, the distance from a router to itself (or any
directly adjacent host) is 0 and the distance from the
router to its own k-area is 0.

In OSPF terminology, a routing node connected
to the backbone network serves as a boundary node.
Routers not connected to the backbone are simple
nodes. By taking into account destination behind
routers, masks and subnets, our description of the
network hierarchy can be mapped into a hierarchical
addressing scheme that would be practical on an In-
ternet. For our purposes, it suffices to illustrate the
fact that in HIPR, a destination is a single entity or an
arbitrary aggregation of entities following McQuillan’s
scheme.

3. HIPR

3.1 Design Principle

The basic design concept of HIPR is simple. Each
router communicates to its neighbors its hierarchical
routing tree in an incremental fashion. Its hierarchi-
cal routing tree consists of all its preferred hierarchi-
cal shortest paths to each known destinations in its
own l-area, all known highest-level areas, in general
all (k — 1)-areas within its own k-area. This implies
that border nodes forbid detailed routing tree infor-

Fig. 2. Hierarchical Routing Trees at Nodes

b) Routing Tree sent to areas
outside A

(c) Routing Tree sent to areas

(a) Routing Tree sent to neighbor out! u
within area A outside A1

within area Al

Fig. 3. Hierarchical Routing Trees Sent by Border Nodes

mation regarding their own areas from percolating to
other areas. Hence, for a hierarchical routing tree, an
entire foreign area is simply another node in the tree.
Figures 1 and 2 illustrates this idea. Figure 1 shows
the topology of a network organized into three hierar-
chical levels; Figure 2 shows the hierarchical routing
tree that router d needs to communicate to its neigh-
bor routers (within area A1) and the hierarchical rout-
ing trees of its two neighbors ¢ and ¢. Bold nodes in
the figure corresponds to “self reference” entries in the
router’s routing table. Notice that the path from d to
remote areas consists of both routers within router d’s
l-area and other remote areas.

Consider a border node in the given topology (say
¢). The hierarchical routing tree propagated to all
nodes within the area containing node ¢ is shown in
Figure 3(a). For the areas outside the area contain-
ing node ¢ (i.e., outside A), the hierarchical routing
tree sent to the peer nodes of other areas is shown in
Figure 3(b).

Consider border node b in Figure 1. This is a border
node connecting areas Al and A2 which are contained
in the bigger area A. The routing tree sent by node b
to its peer border node in area A2 (within area A) is
shown in Figure 3(c).

Routers exchange their hierarchical routing trees
incrementally by communicating only the hierarchical
distance and second-to-last hop (predecessor) to each
destination. In the case of destinations within router
t’s l-area, the second-to-last hop consists of a router.



In the case of a remote area known to router i, the
predecessor consists of either a border node in router
t’s l-area or a remote area. The hierarchical distance
to a destination consists of the true shortest distance
to a border node. The rest of this section describes
the information and procedures that HIPR uses to
update the hierarchical routing trees of routers, ex-
amining that no routing table loops are ever formed.
In essence, HIPR uses a distributed implementation of
Dijkstra’s shortest-path algorithm over a hierarchical
graph.

Internet routing protocols maintain routing infor-
mation about networks (not individual hosts) and
must support subnetting. To use HIPR as a scalable
Internet routing protocol, it should support a mini-
mum of one level of areas. Even though HIPR sup-
ports multiple levels of areas, because OSPF supports
only two levels, in this paper we discuss HIPR based
on only one level of areas.

3.2 Information Maintained at a Router

Each router maintains a single routing table that
can be logically divided into two parts: a node-level
routing table (NRT) and a area-level routing table
(ART). The NRT portion of the routing table main-
tains information about the routers and destinations
in the same area with which a node is affiliated. The
ART portion of the routing table maintains informa-
tion about other areas (higher-level areas to which a
node belongs). Both parts of the routing table are
updated using the same algorithm.

The entry for destination j in node #’s NRT consists
of a destination’s identifier, the distance to the desti-
nation (D), the successor (sj), the predecessor (p;)
along the preferred path (shortest path) to the des-
tination, and the feasible distance to the destination
(F'D}), which we define subsequently. The NRT also

maintains a marker (denoted by tagj) used to update

the routing table entries. For destination j, tag§ spec-
ifies whether the entry corresponds to a simple path
(tagj = correct), a loop (tag; = error) or a destination

that has not been marked (tag;: = null). This marker

is used to reduce the number of routing table entries
that need to be processed after each input event im-
pacting the routing table.

The ART maintains similar information for each
area known to node . The distance from a source
to destination area is the length of the hierarchical
path from the source to the destination area. The
successor entry for the ART is the nezt area in the
path towards the destination area and the predecessor
entry is the area previous to the destination area. The
successor and the predecessor entries will be null when
t determines that the individual or area destination is
unreachable.

In addition to the routing table, a router also main-
tains a distance table, link-cost table and a reply-status
table. Distance table maintained at each router is a
matrix containing for each destination j, the hierar-
chical routing tree reported by its neighbors k& € N;.
At router 1, D3y, and pjy, represents the distance and

the predecessor reported by neighbor k for destination
j, respectively.

The link-cost table contains the cost of each link
incident to the node maintaining the table. The cost
of the link is denoted by [;;. The cost of an inactive
link is set to infinity.

The reply-status table at node ¢ maintains the val-

ues of the reply status flag (rzk) for each neighbor, &,

i
and for each known destination and area, j, to node

1. Each entry in this table indicates whether or not
a node is waiting to get a reply from its neighbor in
response to its query.

3.3 Information between

Nodes

Routing information is exchanged among neighbor-
ing nodes by means of update messages. An update
message from router ¢ consists of a vector of entries re-
porting incremental updates of its routing table; each
entry specifies an update flag (denoted by uﬁ), a des-

tination j (i.e., an individual node or an area), the re-
ported distance to that destination, and the reported
predecessor (individual node or an area) in the path
to the destination. The update flag indicates whether
the entry is an update (uj; = 0), a query (uj = 1), or
a reply (uj = 2).

Because every router reports to its neighbors the
predecessor in the shortest path to the destination, the
complete hierarchical path to any destination (called
the implicit path to the destination) is known by the
router’s neighbors. This is done by the path traversal
on the predecessor entries reported by the router [12].

In the specification of HIPR, the successor to a
destination j for any router is simply referred to as
the successor of the router. Same reference applies
to other information maintained by the router. Simi-
larly, updates, queries and replies refer to destination
j unless otherwise stated.

The information propagated to the neighbor de-
pends on whether the node is a border node or not.
Border nodes block any information about its local
area before sending an update to other border nodes
(in its peer areas). This ensures that the algorithm is
scalable.

A router can be in one of the two states active or
passive at any given time. A router 7 initializes itself
in passive state with an infinite distance for all its
known neighbors and with a zero distance to itself.
After initialization, router i sends updates containing
the distance to itself to all its neighbors.

3.4 Distance Table Updating

The procedures used in HIPR to update the entries
of the routing tables are similar to the procedures used
in LPA [3]. The key difference is that, a border node
at level k supports hierarchical routing by making sure
that no routing information regarding destinations in
its own l-area or any (k — 1)-areas in its own k-area
percolates to a neighbor border node in another k-
area.

When router ¢ receives an input event indicating the
change in the cost of link (7, k), it updates its link-cost
table with the new cost of the link and then updates

Exchanged



the distance table entries making sure that the implicit
paths after the changed state of the network does not
imply any loops. Updating the distance table entries
erases the outdated path information by making the
path information consistent with the latest update.
This is done by updating the distance and predeces-
sor information for each destination j affected by the
input event (D;k = DJ’? + d;i; and pj), = p%). In addi-
tion to this, the path to any destination j through any
other neighbor which includes neighbor k is also up-
dated. This is done by walking through the distance
table entries of a node. If the path implied by the
predecessor reported by router b (b # k and b € N;)
to destination j includes router k, then the distance
and predecessor entries are updated for that path.

The topology information within an area is trans-
parent to nodes outside the area. Border or boundary
nodes prevent the propagation of routing information
outside an area by blocking such messages. All up-
dates received by a node are processed in a similar
mannet.

3.5 Blocking Temporary Loops

A router forces its neighbors not to use it as a
successor (next hop) to a given destination when it
detects the possibility of a temporary loop. This is
done by using an interneighbor coordination mech-
anism. The algorithm defines a feasibility condition
(FC) using which, a complete order of routes along a
given path can be established. The feasible distance
(F'D;) of router i for destination j is the smallest value

achieved by the router’s own distance to j since the
last time router ¢ sent a query reporting an infinite dis-
tance to j. Between two synchronization points (query
originating points), the cost of the link can change or
remain the same but cannot increase. This ensures
that routing table loops are eliminated.

The feasible distance to a destination is initialized
to infinity. At every synchronization point, the fea-
sible distance is taken as the minimum of the exist-
ing feasible distance and the shortest path entries.
Whenever the feasible distance has to be increased,
an interneighbor coordination mechanism is initiated
by the exchange of queries and replies.

A router is chosen as a successor to a destination
only if it satisfies the following feasibility condition.
Feasibility Condition: At time ¢, router i can
choose any router n € N;(t) as its new successor 5}

such that D;n(t) + dm(t)': Diin () = min{Dj»x(t) +
diz(t)|z € N;(t)} and D}n(t) < FD;(t) If no such
neighbor exists and D; (t) < oo, router i must keep its
current successor.

3.6 Routing Table Updating

After the path information is updated, the way in
which router ¢ updates its routing table for a given
destination depends on whether router i is passive or
active for that destination. A router is passive if it
has a feasible successor, or has determined that no
such successor exists and is active if it is searching for
a feasible successor. A feasible successor for router i

with respect to destination j is a neighbor router that
satisfies FC.

When router i is passive, it reports the current
value of D% in all its updates and replies. However,

while router ¢ is active, it sends an infinite distance in
its replies and queries. An active router cannot send
an update regarding the destination for which it is ac-
tive. This is because an update during active state
would have to report an infinite distance to ensure
that the inter-neighbor coordination mechanism used
in HIPR provides loop freedom at every instant.

If router 7 is passive when it processes an update
for destination j, it determines whether or not it has a
feasible successor, i.e., a neighbor router that satisfies
FC.

If router ¢ finds a feasible successor, it sets F'Dj

equal to the smaller of the updated value of Dj» and
the current value of FD; In addition, it updates its

distance, predecessor, and successor making sure that
only simple paths are used.

Router ¢ then sends updates to its neighbors if its
routing table entry changes. Alternatively, if router
i finds no feasible successor, then it sets F D! = oo

and updates its distance and predecessor to reflect
the information reported by its current successor. If
Dj(t) = oo, then s;(¢) = null. Router i also sets the

reply status flag (r;k = 1) for all k € N; and sends a

query to all its neighbors. Router i is then said to be
active, and cannot change its path information until
it receives all the replies to its query.

The tagging mechanism used for routing table up-
dating ensures that only those routing table entries
affected by the input event will be traversed and up-
dated. i.e., if there is a topology change in the existing
routing tree then, only nodes which are downstream to
that topological change need to be updated since this
change does not affect nodes upstream to the topologi-
cal change. This mechanism minimizes the processing
that has to be done for each update message.

A path ij(t) is defined by the predecessors re-

ported by neighbor £ to router j stored in #’s distance
table at time t. To ensure loop-free paths, a path
traversal from j back to k£ is made using the prede-
cessor information. Complete or partial path can be
traversed. The path traversal ends when either a pre-
decessor x for which tagi = correct or tagi, = error
or neighbor k is reached. If tagl = error, then tagj is
set to error also; otherwise, the neighbor & or a correct
tag must be reached in which case tag! is set to cor-

rect. This mechanism ensures loop-free paths without
having to traverse the entire routing table.

3.7 Processing of Queries and Replies

Queries and replies are processed in a manner simi-
lar to the processing of an update, as described above.
If the input event that causes router ¢ to become active
is a query from its neighbor k, router ¢ sends a reply
to router k reporting an infinite distance. This is the
case, because router k’s query, by definition, reports
the latest information from router k&, and router 7 will
send an update to router k when it becomes passive if
its distance is smaller than infinity. A link-cost change



is treated as a link failing and recovering with a new
link cost.

When router ¢ is active and receives replies from
all its neighbors, it resets the reply flag (r;k = 0).
This means that router i’s neighbors have processed
the query. Therefore, router i is free to choose any
neighbor that provides the shortest distance, if there
is any. If such a neighbor is found, router ¢ updates
the routing table with the minimum distance and sets
FDi = Di

If router ¢ is passive and has already set its distance
to infinity (D; = 0), and receives an input event that
implies an infinite distance to j, then router ¢ simply
updates Dj»k and d;; and sends a reply to router k

with an infinite distance if the input event is a query
from router k. This ensures that updates messages
will stop when a destination becomes unreachable.

A router does not wait indefinitely for replies from
its neighbors because a router replies to all its queries
regardless of its state. Thus, there is no possibility
of deadlocks due to the inter-neighbor coordination
mechanism.

3.8 Example

Consider the topology in Figure 1. We concentrate
on area Al which contains a four-node network. Area
Al has three border nodes, a, b and ¢ through which
it is connected to areas A3 (and B), A2 and C| re-
spectively. To simplify the description of how HIPR
operates, a “virtual topology” of areas and routers
is shown in Figure 4 (a). This topology consists of
the destinations known to routers in area Al and the
links between destinations that may be known to the
routers in area Al depending on their routing trees.
This forms a eight-node network, with each node rep-
resenting either a node or an area. A link to an area
indicates the connectivity from a border node outside
the area to a border node inside the area. A node
indicating an area represents the border node(s) that
provides inter-area connectivity to the area. Message
sent by an “area node” over a link corresponds to mes-
sages sent by the corresponding border node. We ex-
plain the working of HIPR on this topology when the
link connecting areas A and C fails and focus on the
routing table entry for destination C.

In Figure 4, the number adjacent to each link rep-
resents the weight of that link; U, ) and R represents
updates, queries and replies respectively. The arrow-
head from node z to node y indicates that node Y is the
successor of node z towards destination j; i.e., sj = y.

The label in the parenthesis assigned to node .Z‘ indi-
cates current distance (Df) and the feasible distance

from z to destination j (D7 ).

When link (¢, C) fails, node ¢ updates its distance
table by setting the distance to area C' to co. Node ¢
is unable to find a feasible successor which satisfies the
FC to reach area C'. This is because the distance to C'
through its other neighbors d and b is greater than the
feasible distance (i.e., D¢, > FDg and D¢, > FDg).
Accordingly, node ¢ sen s a query to all its nelghbors
(Figure 4 (b)).

When nodes d and b receive the query, they update

its distance tables and determine that they have no
feasible successor to reach area-node C'. In turn, they
become active by sending out a query to their neigh-
bors and also reply to node ¢ with an infinite distance
(Figure 4 (c¢)).

Upon receiving the queries about destination C|
nodes a and A2 reply with a finite distance to their
neighbors, because they have a feasible successor sat-
isfying the feasibility condition. Also, node @ updates
its distance and routing table entries as it now uses a
different path to reach C and also sends an update re-
garding this (Figure 4 (d)). On receiving replies with
finite distances, nodes d and b update their distance
and routing table entries and in turn send updates
about their new path and distance to reach area-node
C to all their neighbors (Figure 4 (e)). Finally, node d
updates its distance and routing table entries, recom-
putes its feasible distance and sets node d as its suc-
cessor node to reach area-node C. Updates are sent
accordingly (Figure 4 (f)). Any topological change
within an area is transparent to the nodes outside the
area. When a link within area Al fails, HIPR will be
run within area A1 only and this information will not
be propagated to nodes outside Al.

4. Correctness of HIPR

Loop freedom is guaranteed at all times in topol-
ogy G if the successor graph S;(G) is always a directed
acyclic graph. In the steady state, when all routing ta-
bles are correct, Sj((G) must be a directed tree pointed
towards j. The following theorem proves that HIPR
is loop free.

Theorem 1: HIPR is loop-free at every instant.
Proof: Let GG be a stable topology and let the successor
graph S;(G) be loop-free at every instant before time
t. No loops can be created at this state unless routers
change successors and modify the successor graph.

There can be two instances when a successor graph
can change: (a) the successor graph within an area
can change, or (b) the successor graph of the virtual
network can change.

Because HIPR is the same as LPA within an area,
the proof that HIPR is loop-free for case (a) fol-
lows from the proof that LPA is loop-free [3]. Be-
cause all areas in the network form a virtual heter-
archical network, and each area is viewed as a single
router/destination from a local node, case (b) reduces
to case (a). Therefore, the successor graph is loop-free
for case (b) also. This proves Theorem 1. O

To prove that HIPR converges to correct routing
table entries, we assume that after a finite time 7T,
no more resource changes (link-cost change or topol-
ogy change) occur. We extrapolate the correctness
properties of LPA [3] to prove that HIPR converges to
correct routing tables.

Theorem 2: HIPR s live.

Proof: Consider the case when the network topology
is stable. When a router receives a message about a
topology change, it tries to find a feasible successor to
the destination for which the cost metric has increased.
A router sends a query to its neighbors if a feasible
successor is not found. A node can be in (a) active
state or (b) passive state when a query is received.
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Fig. 4. Example of HIPR

Case (a): If the node is in an active state, it immedi-
ately replies to the neighbor with an infinite distance.
Case (b): If the node is in a passive state, it tries to
find a feasible successor for the destination and replies
with the distance to destination.

Accordingly, when a query is received, a node ei-

ther replies with a distance to destination or with an
infinite distance. This implies, any router which is
active will become passive in a finite time (because a
neighbor must answer with a reply in a finite time).
This implies that HIPR is free of deadlocks and live-
locks in a heterarchical network. Because the areas
form a virtual heterarchical network, the same results
can be extrapolated to the virtual network of areas.
Therefore, HIPR is free of deadlocks and livelocks for
hierarchical networks. This proves the theorem. 0O
Theorem 3: After a finite time t > T, the routing
tables of all routers must define the final shortest path
to each destination.
Summary of Proof: Let us assume that the result
is true for a stable topology at time T'(H) when all
messages sent by routers with shortest paths having
(H — 1) hops (H > 1) to a given destination j have
been processed by a neighbor. Also, assume that des-
tination j is reachable through every router.

By the inductive proof for an heterarchical net-
work [3], the result is true for HIPR within an area.

Each router maintains information about all areas
and a routing table entry for a area is treated similar
to an entry of a local router/destination. This forms a
virtual network where each node in the network is an

area and this can be viewed as a heterarchical virtual
network. The rest of the proof consists of applying
a similar inductive proof as in [3] to this virtual net-
work. O

Theorem 4: A finite time after t, no new update
messages are being transmitted or processed by routers
in G, and all entries in distance and routing tables are
correct.

Proof: On initialization, distance entries of distance
and routing tables are set to infinity and predecessor
entries are set to invalid. Since all nodes are disjoint
when initialized, the table entries are correct.

Let the distance and routing table entries be correct
at time ¢; and let the topology be stable at that time.

If the entries are not correct at time 3 = t; +¢, the
only way a router can change its distance and routing
table entries is by processing an update message. So,
there could be three possibilities. A router might have
processed an update, a query or a reply.

From Theorem 2, a finite time after an arbitrary

change, router ¢ must be passive. If router ¢ receives
an update for destination j from neighbor k at time ¢;,
the distance table of ¢ has to be updated and routing
table is updated if required. This update can be of
two types: (a) for a local destination (b) for a remote
destination (area)
Case (a): If the update is about a local destination, if
there 1s no path to destination j an infinite distance is
reported. If a finite distance is reported to the desti-
nation and a feasible successor is found, distance and
routing tables are updated.



Case (b): If the update is about a remote destination
(area), local tables are updated with the new path
information.

An updated entry is added to the routing table only
when the shortest path information is changed and
this new information will be reported to the neighbors
as routing updates.

Queries and replies are received about local destina-
tions only Swithin a area). A query is always answered
with a reply. The query originator, after getting all
replies from its neighbors, updates the distance and
routing table entries and conveys this changed infor-
mation to its neighbors.

This implies that, for any given destination, a
router generates new updates or queries after it
reaches its final shortest path to that destination. Be-
cause every destination must obtain its final shortest
path to all destinations in finite time (from Theorem
3), the theorem is true. O

5. Performance of HIPR

HIPR implements Dijkstra’s shortest path algo-
rithm over a hierarchical graph in a completely dis-
tributed manner; this means that each router works
directly with the hierarchical routing tree needed to
carry out part of the computation of hierarchical
shortest paths. In contrast, OSPF implements Dijk-
stra’s algorithm in a replicated manner, which means
that each router needs a copy of the hierarchical graph
on which it runs Dijkstra’s algorithm to obtain a hi-
erarchical routing tree of its own. Accordingly, it
is expected for HIPR to outperform OSPF. To ob-
tain insight on the average performance of HIPR in a
real network, we performed simulations of HIPR and
OSPF, both running over the same hierarchical net-
work topologies. Although HIPR supports arbitrary
hierarchical topologies, OSPF requires the use of a
backbone that interconnects areas. Accordingly, to
establish a fair basis for comparison between HIPR
and OSPF, we simulated only a two-level hierarchical
topology. We have simulated only those elements of
OSPF that are essential for route computation. Mes-
sages are assumed to be delivered error free over an
operational link and an infinite sequence number space
is used in OSPF to determine the validity of link state
updates.

A router receives a packet and responds to it by
running the simulated routing algorithm, queueing the
outgoing updates and processing the packets one at a
time in the order of their arrival. If a link fails, the
packets in transit are dropped. The redundant packets
in the network are removed from the queue. The sim-
ulation ensures that all packets at a given simulation
time are processed before the new updates are gen-
erated. The discrete-event simulation language called
Drama [18] was used in this work.

Simulations were performed for both well-known
and randomly generated topologies [12]; similar re-
sults were obtained in all cases.

The topology for which we present simulation re-
sults has ten areas and each area has ten nodes in it.
Each area has at most 3 border nodes and a border
node connects two or more areas. The interconnec-
tion among areas is based on McQuillan’s approach

to hierarchical routing. To generate backbone-based
areas, we generated a random graph for each subnet;
the backbone is also a random graph interconnecting
these subnets. The random graphs are generated us-
ing Waxman’s model [17]. Our simulation network has
100 nodes and 124 links.

To obtain the average figures, the simulation makes
each link (router) in the network fail and recover, and
count the steps and messages needed for each algo-
rithm to converge. The average is then taken over all
link (router) failures and recoveries. The routing algo-
rithm was allowed to converge after each such change.
In all cases, routers were assumed to provide one time
unit of delay.

Router failures are modeled as the simultaneous
failure of all links attached to that router. Router re-
coveries are modeled as all links associated with that
router coming back up simultaneously. Several quan-
tities were measured. These include, the total time
elapsed for the algorithm to converge (duration), the
total number of packets transmitted over the network;
each packet may contain multiple updates (message
count), the total number of updates and changes in
the link status processed by routers (update count)
and the total number of operations performed by each
algorithm (operations count).

5.1 Simulation Results

For each network, we generated test cases consist-
ing of all single failures and recoveries for both routers
and links in which the routing algorithms were allowed
to converge after each change. The link model allows
link delay and link cost to be set independently. Each
unit of time therefore represents a step in which all
currently available packets are processed. Each input
event is processed independently of other events re-
ceived during the same simulation step. All topology
changes are performed one at a time and the algo-
rithms were allowed to converge before the next re-
source change.

The graphs in Figures 5-6 shows the average num-
ber of steps taken, average number of messages ex-
changed and the average number of operations per-
formed for HIPR and OSPF before each algorithm
converges in the case of modified Doe-Esnet topology.
The error-bars in the graphs indicate the standard de-
viation of each of the mean values.

HIPR outperforms OSPF in all cases considered in
our simulations. While the number of steps taken by
HIPR to converge after a resource failure is compara-
ble to OSPF, the number of steps taken to converge
after a resource recovery is significantly better than
that of OSPF. For the random topology, the number
of operations required by OSPF is an order of magni-
tude larger than that of HIPR and the number of mes-
sages exchanged is more than twice that of HIPR for
resource failure cases. This illustrates the performance
advantage provided by the distributed implementation
of Dijkstra’s shortest path algorithm in HIPR. The
average of the measured parameters is taken over all
resource failures and recoveries. The algorithm was al-
lowed to converge after each such change. Because of
the distribution of values, both the mean and the stan-
dard deviation of the distribution are given. There is
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no sampling error for the results because all possible
cases are covered.

Conclusion

We have presented, verified and analyzed the per-
formance of the first hierarchical routing algorithm,
HIPR, based on the maintenance and exchange of hi-
erarchical routing trees. The main idea of HIPR is
to provide a distributed implementation of Dijkstra’s
shortest path algorithm over a hierarchical graph or-
ganized into areas. HIPR is an extension of the loop-
free path-finding algorithm (LPA) using McQuillan’s
scheme for hierarchical routing.

The performance of HIPR was compared with that
of OSPF. The simulation results presented in this pa-
per clearly illustrate the fact that HIPR’s performance
is far superior to OSPF’s. This suggests that an in-
ternet routing protocol based on the exchange of hi-
erarchical routing trees would be superior to OSPF in
terms of scalability and efficiency.
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